Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Da-Xin Shi and Hong-Liang Chen

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People' Republic of China

Correspondence e-mail:
|xf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.053$
$w R$ factor $=0.137$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 4'-(4-methoxyphenyl)-1', $7^{\prime \prime}$-dimethyl-2,3"-dioxo-5"-phenyl-2,3,2", $3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$-tetrahydro- 1 H -indole-3-spiro-2'-pyrrolidine-3'-spiro-2"-(thiazolo-pyrimidine)-6"-carboxylate

In the title compound, $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, the two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-a]pyrimidine ring. Two molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, with an $\mathrm{N} \cdots \mathrm{N}$ distance of 3.027 (2) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle of 140.2°.

Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported. The compound was synthesized by the intermolecular [$3+2$]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-(4-methoxybenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (Tozkoparan et al., 1999).

The molecular structure of (I) is shown in Fig. 1. There are two spiro junctions in the molecule which consists of a planar 2-oxindole ring, a pyrrolidine ring and a thiazolo[3,2-a]rolidine ring ($\mathrm{N} 3, \mathrm{C} 18, \mathrm{C} 17, \mathrm{C} 1$ and C 19) has an envelope conformation. Two molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, with an $\mathrm{N} \cdots \mathrm{N}$ distance of 3.027 (2) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle 140.2°.

Experimental

A mixture of 2-(4-methoxybenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) was refluxed in methanol (60 ml) until the disappearance of the starting material, as evidenced by thin-layer chromatography. When the reaction was complete, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ ethyl acetate $=5: 1$), giving the title compound (I) (m.p. 479-481 K); IR (KBr): $3351.4(-\mathrm{NH}), 1743.4,1723.1,1688.2(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (δ, p.p.m.): $1.03\left(m, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.17\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.23(s$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.45\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 3.73\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.99(m, 1 \mathrm{H}$, $\left.-\mathrm{CH}_{2}\right), 4.03\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 4.57(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 5.72(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH})$,

Received 7 August 2003 Accepted 26 August 2003 Online 30 August 2003

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms have been omitted for clarity. The minor disorder component has primed atom labels.
6.69-7.74 ($m, 13 \mathrm{H}, \mathrm{ArH}$), 7.86 ($b s, 1 \mathrm{H},-\mathrm{NH}$). 20 mg of (I) were dissolved in 15 ml dioxane; the solution was kept at room temperature for 15 d and natural evaporation gave colorless, single crystals of (I), suitable for X-ray analysis.

Crystal data
$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$
$M_{r}=608.70$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=14.990(6) \AA$
$b=11.375(5) \AA$
$c=17.815(8) \AA$
$\beta=92.254(6) \AA$
$V=3035(2) \AA^{\circ}$
$Z=4$
$D_{x}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 816 reflections
$\theta=2.3-25.3^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.38 \times 0.30 \times 0.24 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	6236 independent reflections
diffractometer	3567 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.042$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1997)	$h=-18 \rightarrow 12$
$T_{\min }=0.905, T_{\max }=0.960$	$k=-14 \rightarrow 6$
14013 measured reflections	$l=-21 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.137$
$S=1.00$
6236 reflections
413 parameters

Figure 2
The crystal structure of (I), viewed along the b axis.

Table 1
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.31	$3.027(2)$	140

Symmetry code: (i) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

H atoms were positioned geometrically and treated in the riding model approximation $\left[\mathrm{C}-\mathrm{H}=0.93-0.98 \AA\right.$ and $\left.U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. Atom C6 and the atoms of the attached phenyl ring are disordered over two sites. The ratio of site occupancies from the refinement was 0.64:0.36 (17).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tozkoparan, B., Ertan, M., Kelicen, P. \& Demirdamar, R. (1999). Farmaco, 54, 588-593.

